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ABSTRACT: We study a supersymmetric extension of the Standard Model based on discrete
Ay x Z3 x Zy flavor symmetry. We obtain quark mixing angles as well as a realistic fermion
mass spectrum and we predict tribimaximal leptonic mixing by a spontaneous breaking
of A4. The top quark Yukawa interaction is present at the renormalizable level in the
superpotential while all the other Yukawa interactions arise only at higher orders. We study
the Higgs potential and show that it can potentially solve the so called vacuum alignment
problem. The leading order predictions are not spoiled by subleading corrections.
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1. Introduction

Apart from dark matter and dark energy, the experimental observation of neutrino oscil-
lations is the only evidences of physics beyond the Standard Model (SM). A global fit of
all neutrino data at 20 gives the following allowed ranges for the lepton mixing angles [I]:

0.26 < sin? 15 < 0.36, 0.38 < sin®6fy3 < 0.63, sin? 615 < 0.025. (1.1)

These values are consistent with an especial simple, the so called tribimaximal (TB) mixing
ansatz [
sin® @19 = 1/3, sin?fy3 = 1/2, sin?613 = 0. (1.2)

As has been shown in [J—[L7] this peculiar mixing pattern can be explained by an A4 flavor
symmetry where Ay is the discrete group of even permutations among four objects. The
Ay group has four irreducible representations, namely a triplet 3 and three singlets 1, 1’
and 1”7 [[§, [9]. In the majority of the models based on A4 as flavor symmetry, the three
lepton doublets are assigned to the triplet representation of A4 and the three right-handed
singlets are assigned to the three A4 singlets.

In spite of the success of the A4 symmetry to explain TB mixing, the extension of
these models to the quark sector is not straightforward. The simplest way to extend
the A4 flavor symmetry to the quark sector is to adopt the same structure as within the



lepton sector. With such an assignment, up and down-type quark mass matrices are both
diagonalized by the same unitary matrix giving rise to the diagonal CKM matrix. As a
first approximation this leading order result is acceptable. However, in order to reproduce
the correct CKM matrix it is necessary to introduce some subleading terms responsible for
inducing correction of order of the Cabibbo angle A in the quark mass matrices and so in the
CKM matrix. Unluckily it has been shown [[[(] that the requirement that the subleading
terms do not spoil the leptonic TB mixing matrix forces the corrections in the CKM mixing
matrix to be of O(\?) instead of @(\). Therefore the corrections coming from subleading
terms are too small to explain the observed quark mixing angles. Other possibilities to
obtain a realistic CKM matrix without spoiling the leptonic TB mixing prediction have
been studied in literature. An example of SU(5) grand unified case can be found in ref. [2(].
Models in which the A, flavor symmetry both explicitly [RI] and spontaneously broken [RZ],
can also be found in literature. Another possibility is to consider the discrete groups larger
than A4 for flavor symmetry. Recently, some models have been proposed based on the
discrete symmetries 7" [23, 4] and A(27) [B], 4.

In this paper, we propose a model based on A4 adopting a different assignment of
the representation for the quarks and leptons. In particular we assign both left and right-
handed quarks to the singlets 1, 1’ and 1” of A4. Therefore, we have enough freedom to
make the quark sector quite realistic.

As in B4, in our model only the top quark interaction is present at renormalizable
level and we also assume the Higgs doublets superfields H, and H, transform as singlets
under Ay. We use lepton number conservation to make a difference between quark and
lepton sectors. The charged lepton and quark mass hierarchies are obtained in our model by
introducing two auxiliary discrete symmetries Z3 and Z4. All the fermion mass hierarchies
are realized only by the discrete symmetries. Unfortunately the model we propose can
not be directly incorporated into a grand unified gauge theory. For recent attempts in
this direction see [0, Bd—BJ]. The choice of assign both left-handed and right-handed
quarks to singlets of Ay is completely different from models previously proposed in [f-
H, [0, BT, P where left-handed quarks belong to triplet representation of A4. Moreover,
most of the A4 and models based on different discrete groups need to invoke additional
assumptions to explain fermion mass hierarchies. For example a continuous symmetry a la
Froggatt-Nielsen.

The read of this paper is organized as follows. In section ] we describe the basic
features of the model and its field content. In section ] we study the scalar potential and
vevs alignment problem. In appendix we consider all possible sources of corrections to the
leading textures and show the stability of the leading order predictions.

2. The model

We assign the MSSM matter fields and the additional gauge singlet fields to the group
representations of Ay X Z3 x Zy x Ur,(1) respectively as shown in tables EI and E ﬁ, and Q,
are the lepton and quark electroweak doublet superfields for i-th generation, the Ef, Uf
and ﬁf are the lepton and quark electroweak singlet superfields for i-th generation, the H,



L | EY | ES | E5 | Q1| Q2| Qs | U | U5 | US| DY S 1 DS || Hy | Ha

Ay 3 ) s EA A KO s KA I 1 |17 ] 1 |1 1| 1”1 1 1
Z3 wlw | wl|lw|w|w 1 w | w 1 | w?| w w 1 1
Zy 1 i | —i] 1 1 1 1 1 1 1 1 1 1 1 1
U(l) | 1 |-1]-1|-1]0 0 0 0 0 0 0 0 0 0 0

Table 1: The representations of the MSSM matter and Higgs fields under the symmetries associated
to A4, Zs3 (w3 = 1), Z; and lepton number L. The f/i and Ql denote the lepton and quark
clectroweak doublet superfields for i-th generation, the Ef, US and D§ denote the electroweak
singlet superfields for i-th generation, respectively. The H, and Hy are Higgs electroweak doublet

superfields.
or | ¢s | &o,€c | &€ | X | 0
Ay 3 3 1 1 1|1
Z3 1 w w | w? | w?
Z4 1 1 1 1 1 1
Ur(l) | 0 | -2 0 -2 0

Table 2: The representations of the additional gauge singlet fields under the symmetries associated
to A4, Zs, Z4 and lepton number L. The ¢r, ¢pg are Ay triplets, Eo, &', £,&’, X and 0 are A4 singlet
fields.

and Hy are the up and down type Higgs electroweak doublet superfields, respectlvely We
also introduce new fields, respon81ble for flavor symmetry breaking, namely gbg and ¢T as
triplets, and o, &/ ol £,€'. x and 6 as singlets of Ay, respectively. In the following we will
refer to the scalars that transform non trivially under the flavor symmetry Ay X Z3 x Z4
as flavons and analogously we will address the supermultiplets they belong to as flavon
supermultiplets.

Once we have assumed that H, and H, transform as singlets under A4, we are forced
to put Qg and U§ in the singlet representation 1 of A4 in order to have a renormalizable
interaction for the top quark. The Qg — ﬁg interaction, as well as all the others Yukawa
interactions for the up and down type quarks, arise from higher dimensional operators.
This is because we have chosen the charge assignment for the down sector different from
the up one: Qg and ﬁg transform as 1 and 1’ respectively under A4. In particular, we
will show in the following that quark mixing angles and mass hierarchies are a consequence
of the product of the auxiliary symmetry Z3 and the Z3 contained in A4. The auxiliary
Z4 symmetry is introduced to explain charged lepton mass hierarchies. Lepton number
conservation is crucial to distinguish quark and lepton sectors, namely ¢g and ¢ fields
interact with leptons and not with quarks. The field £’ is identical to ¢ and the reason
for its introduction will be come clear in section B, where we will discuss the problem of
how to guarantee the correct vacuum alignment. Since we can always rotate ¢, &’ - and go
to the basis in which just one of the two fields interacts with the fermions, we will neglect
the terms involving &’ in all the Yukawa interactions of the next sections.



2.1 Leptons

In the lepton sector, there are no Yukawa interactions in the renormalizable superpotential.
All interactions arise when subleading contributions are considered:

60155150 + yuF5 (pr L) Hy % + yr-ES (o7 L) Hay
LL)H,H.é bs LI, H,
+yu5()A72§ + yusM + hec.. (2.1)

Wi = ye 5 (or L)Hq

Here A is the cut-off scale, y; are O(1) coupling constants and (LL)’, for instance, stands
for the product of two triplets of A4 that transforms like a 1’ singlet (see appendix []). In
eq. (1)) we have neglected subleading terms of the form E§(érL)” Hyxxx/AY, ES(¢rL)”
H,060 /A*. The charged lepton mass matrix is given by

yeug /N> 0 0 - Lt
M =U. 0 guug /A0 | =% U="42]10?w |, (2.2)
0 0 y A V3 1 w w?

where ¢, v7 and vg are the vevs in the scalar component of fc, QAST and fId, respectively.
For the charged lepton mass spectrum, we obtain

My Uso me <ugc)3 (2.3)
m, A ms A ’ '
and a realistic hierarchy among the charged lepton masses is recovered by assuming
Ueo 2
~ ) 2.4
te %2, (2.4)

with A the Cabibbo angle. For the absolute scale of the mass matrix of eq. (B-J), assuming
yr ~ 1 and vy ~ 100 GeV, one finds

vT 2
NS = SN 2.5
<7 g (25)
From eq. (R.1) we obtain the effective neutrino mass matrix as
a00 2 " y
S
My, = gcbtb N a:yuﬁfab:yub’xa (2.6)
a

where u¢, vg and v, are the vevs of the scalar component of é , gz@s and ﬁu, respectively.
In the basis where the charged lepton mass matrix M; in eq. (2.9) is diagonal, namely
L -U I:, the neutrino mass matrix is diagonalized by the tribimaximal unitary matrix.
The new ingredient here is that the charged lepton mass hierarchies is derived from a
Z3 x Z4 discrete symmetry and not a Froggatt-Nielsen continuous one.

The scale A of the model can be fixed by requiring that the neutrino Yukawa couplings
are of order O(1). With the plausible assumption! of having vg ~ ug ~ vy eq. (R.6) then

leads

2
VS

A2

~ 1eV, (2.7)
ie. A ~109 — 10" GeV.

IThis assumption will be justified in the discussion of the potential of the model, see next section.



2.2 Quarks

From the assignments in tables [I] and [, it follows that the only renormalizable interaction
in the superpotential is given by
WO =y, QsUsH,, (2.8)

giving mass to the top quark. Therefore at leading order only the top quark is massive
and all the other quarks are massless. We will show in this section that the correct masses
and mixing pattern is achieved by considering subleading corrections to the leading super-
potential Wq(o) for quarks in eq. (B-§). In the next section we will show that such a result
is stable, i.e. the mass textures do not change once we consider subleading corrections to
the superpotential:

Wy =W + (cu QUSOH,, + ¢, QsUSOH, + b, Q1USYH, + b, QsUfxH,,)/A
+(ye QuUSO0H,, + a,, Q1USOLH, + d, QUL H,) [ A?
+yu QUYL /A
+(yp Q3 D§0H  + ¢ Q3 D5 Hy) /A
+(ys Q2D50X Hy+by Qs DO Hy+bg Q1D5OX Hy+cq Q2 DSOOH 4+ aq Q1D5X X Hyt) /A

+(ag Q2DIR00H + ya Q1D ROHa) /A® (2.9)
Here y;, a E ), b( ) and c( ) are coefficients of order O(1) and the following quark mass matrices
result

uy UpUx Ux uguy uy x“G
A2Yu Az Qu Tbu A3 “Yd Az ad ba
2 d
M* = Vu U[e\gx a; %yc %Cu ’ M" = Vd uf\gx :1 9u Ys ﬁcd (2'10)
T R R i\x cy Ry

Here ug and u,, are the vevs of the scalar component of 6 and % In egs. (R.1() the up and
down quark mass matrices are correctly reproduced for a natural choice of the parameters:

Ux )3 Yo 2
R R (2.11)

With the choice of eq. (R.11]), the quark masses and mixing angles are approximately given
by
2

2
g, X 6 Y 4 ~
mu~yuA2vu~Avu, Me R YegoUu ~ A0y, Ty R YUy ~ Uy,
2
UYU Ug
X ~ ugu 5 ~ 2
Ma X Y3 va ~ Nvg, M & ysHiFug ~ Mg, my & —ypva ~ A g, (2.12)

and the CKM matrix elements can be estimated as

Vus%&<%_a_u>'\“)\7 Vub%u_X<@_b_u>N/\37 chb"’@<%_c_u>'\“)\2
ug \¥Ys Yo A\w w A\y  w
(2.13)

The quark mass hierarchies of eq. () are in slight in contrast with the experimental
data. However the free parameters of O(1) in the quark mass matrices in eq. (R.10), allow
us to fit all the quark masses by admitting a fine tuning of 10% and a reasonable values of
tan (.



ok | 0% | 65 | €5 o1 | s | €0y €lc | EE | x| 0

Ay 3 3 3 1 3 3 1 1 1|1
Z3 1 1 w | w? 1 w w w | w? | w?
Zy 1 1 1 | =i 1 1 i 1 1 1
Ur(1) 0 2 4 0 0 -2 0 -2 010
Ur(1) 2 2 2 2 0 0 0 0 010

Table 3: The representations of messenger R-supermultiplets and the flavon supermultiplets.

3. The potential

In section P.J] we have seen that the TB mixing matrix is obtained when the triplets qu and
<;33 break A4 in the direction (vp,vr,vr) and (vg,0,0) respectively. Our potential must
break A4 in this direction.

In section | we have implicitly assumed that the part of the superpotential that gives
rise to the Yukawa Lagrangian of the SM matter fields is given by eq. (R.1]). This part
was obtained by integrating out some heavy fields. Inspection of eq. (R.1]) show that W,
is charged under a global U(1)g symmetry with R-charge +2 if we assign to the matter
supermultiplets R-charge +1 and to the flavon supermultiplets involved in the effective
superpotential W; R-charge 0. The global U(1)g is the continuous symmetry that is bro-
ken to the discrete R-parity once we include the gaugino masses into the model. We may
assume that W) and the part of the superpotential that involves all the supermultiplets
that transform non trivially under the flavor symmetry A4 x Z3 x Z4 has R-charge +2 and
therefore give rise to a Yukawa superpotential as in eq. (B.J) invariant with respect to the
continuous U(1)g. Since the flavon supermultiplets bring null R-charge, to build a super-
potential with total R-charge 42 avoiding the spontaneous breaking of the R-symmetry,
we need some messenger fields that carry R-charge +2 is necessary that the superpotential
be linear in these fields. To the flavon supermultiplets of table f| we therefore add 4 mes-
senger R-supermultiplets given in table [|. The superpotential W is invariant under all the
symmetries of the model that contain an explicit breaking term of the continuous Ur (1)
and the discrete Z3 symmetries. We assume that the explicit breaking term arises from the
presence of an heavy sector that does not interact with the matter content of the model,
thus ensuring that all the terms generated in the Yukawa superpotential by the U (1) and
Z3 explicit breaking terms are sufficiently suppressed and do not affect the fermion mass
matrix structures. The spontaneous breaking of the continuous lepton number U(1), gives
to unphysical massless Goldstone boson. We will discuss in detail in the appendix the
problem of the Goldstone boson. Nevertheless, as shown in the appendix, by imposing the
R-symmetry invariance under the discrete symmetries, our superpotential presents some
accidental global continuous symmetries that give massless states. We guarantee the sta-
bility of the minimum and give positive mass to the massless states by adequately choosing
the Viog of SUSY. The full superpotential W is given by

W = My ¢hor+A\rdhdrdr+Ase(d3ds) 0+ sy (0%6s)" X+McE5éc + M'c €5€ ¢
A5 R sds + Ae O dsE + Ne O b€’ (3.1)



From eq. (B.1)) we derive the scalar potential by

2

ow
+ ‘/soft ) (32)

VZ‘@

where Vg includes all possible SUSY soft terms for the new scalars of the model invariant
under all the discrete(A4, Z3, Z4) and the continuous (Ur(1)) symmetries. It breaks the
accidental global continuous symmetries presented by the SUSY invariant scalar potential.
We will discuss this point in detail in the appendix. Since the scale of Vg is 1 — 10 TeV,
while the scale of the SUSY invariant potential is 10'° — 10'2 GeV, we can neglect Vo and
search for a vacuum configuration that is SUSY invariant. It is given by

(¢r) = (vr,vr, 1),
(¢s) = (vs,0,0),
(X) = uy,
(&) = ue,
(&) = ug,
(€c) = ug.
<§/C> = U
0) = uyg. (3.3)

Next we want to identify the region of the parameter space for which the vacuum configu-
ration of eq. (B.d) is the minimum of eq. (B.4) with Vi, = 0. Since none of the messenger
fields acquires a vev and since they enter linearly in all the terms of the superpotential, in
the SUSY limit all the derivatives with respect to the F' components of the supermultiplets
not charged with respect to the U(1)r symmetry vanish. Therefore in the discussion of the
vacuum configuration we have to take into account only the derivatives with respect to the
F components of the messenger supermultiplets. Taking the derivative of W with respect
to the F' components of the supermultiplets <;3T, qgf% and (ﬁllf and substituting the vacuum
configuration of eq. (B.J) we find

ow. _Mrp 1
Ofgr 3 T3

oW Ase sy
= “ygug + 22X

ow
0fos,,

oW
Of s,
oW

ofs

R 1,2

2
)‘TUT s

VSUy

=0,

= AeUsug + )\gvsu'&

= 0. (3.4)



From eq. (B.4) one finds that a possible solution conserving SUSY is given by

My
T = _g7
w, = —258,
X )\SX 0 s
!
ug = —)\—zué (3.5)

Taking the derivative with respect to the F' component of ég we have

oW
= /\cufc + /\/CUgC , (3.6)
from which it follows that
A/
Ug, = —i ugr, - (3.7)

A few comments might be in order. In the sections R.1-R.9 we have seen that the
correct fermion mass matrices are obtained assuming that the vevs satisfy

U Ugo 2
— ~ ==~ A
A M
vr Us  Ug 2 .43
— o~ =~ =~ AN
A A A ’
Uy 43
A A7, (3.8)

with A the Cabibbo angle.

From eqs. (B.§) we see that in order to satisfy the relations given in eq. (B.§) we need
Mrp ~ N2A, f\‘%i ~ A. Aside from vp, all the vevs remain undetermined and their natural
value tends to be A (the cut-off scale) and not (A% + A3)A. The problem of how to stabilize
the relations given in eq. (B.§) is therefore not completely solved. We assume that it can
be solved by including loop-contributions or explicit breaking terms of the abelian discrete
symmetry arising in a hidden scalar sector. We do not enter into the details of this problem
and assume that there exists a choice of the parameters of the potential that satisfy the
relations given in eq. (@) Once we include V. we have to choose the soft terms in such
a way that Vo < 0 in the vacuum configuration of eq. (B.§). The stability of the minimum
of the potential of eq. (B.3) can be assured.

Corrections to the leading mass matrix textures of section f are induced by higher order
operators in the superpotential of eq. (B.I)) that can change the vacuum configuration given
in eq. (B.3). These possibility could disalign the triplet vevs or may be directly affect the
mass matrices. In appendix we accomplish the full analysis of higher order corrections to
the mass matrix textures. In particular we check that the corrections induced by the scalar
interactions and by the introduction of higher order operators in the superpotential are
under control and do not destroy the leading order predictions of the model.



4. Conclusions

We have proposed a supersymmetric extension of the standard model based on the discrete
flavor group A4. The new features with respect to earlier work present in the literature is
that all the quarks, both left-handed and right-handed, transform as singlet representations
of A4, 1,1’ and 1”. This assignment allows us to ensure that only the top quark acquires
mass at tree level. All other entries in the mass matrices are generated by higher dimen-
sional operators and are suppressed by powers of 1/A. The introduction of two auxiliary
discrete symmetries Z3 and Z4 have allowed us to obtain realistic charged fermion mass
hierarchies and the CKM mixing matrix, without appealing to a continuous U(1)r flavor
symmetry, lepton number avoids dangerous mixing between quarks and leptons. Finally,
we have studied the scalar superpotential that presents the correct A4 breaking alignments
and with the introduction of apposite explicit breaking terms of the abelian symmetry of
the model we have determined all the flavon scalar vevs.
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A. Conventions

The finite group of the even permutations of four objects is A4 [I§, [[J]. Its generators S
and T obey the relations
S§? = (ST} =13 =1.

We remark that Ay has four irreducible representations, 3, 1, 1’ and 1” satisfying the
following product rule

3x3=3+34+1+1+1"
Ix1=11x1"=1,1"x1=1",.... (A.1)

We chose to work in the basis in which S is a diagonal matrix in the three-dimensional
representation. Different basis, like the one where T is diagonal, are related by unitary
transformations, see for instance [[§]. Therefore if a = (a1,az,a3) and b = (by, by, bs) are
two triplets of A4 their products are given by

a1by + agbs + asbs),

arby + w?agby + wazbs),

aiby + wasbs + w?agbs), (A.2)
asbs, azby, aibs),

—_
I
|
A~ N~~~
Q
=
S N N N N
I
I
g
w
o N T N

azba, a1bs, asby).



B. The scalar potential
The full expression of the scalar potential at the leading order is given by eq. (B.2)
V' = Vsusy + Vot - (B.1)

Here Vo contains soft SUSY breaking terms that stabilize the minimum of Vsygy. From
egs. (B-)) the part of the scalar potential that involves only the flavons is given by

Vausy = |Mror + 2X¢107|* + [Asetdst + Asydsx|*
+Aspshs + Aeds€ + Aedsél* + [Moso + Mo of . (B.2)

Without lost of generality, we can rotate the £ and & fields in new combinations &’
and & in which only £ develop a vev. The same argumentation can be applied to £ and
& obtaining ¢ and (. In terms of the new fields the potential of eq. (B.3) is given by

Vausy = |Mror + 20¢107|* + [Asetdst + Asydsx|>
+|Aspsds + Aepsé* + |Mcéol? . (B.3)

with 5\5 = 1/)\2 + /\'52 and Mo = ,/M(zj + Mg At this level the two combination that

develop vevs, 5/ and é’c, are massless, lacking of a potential. They acquire a (positive)
mass only when we add to the SUSY scalar potential of eq. (B.J) the soft scalar potential
Viott, provided it contains adequate mass terms, as it has been done in eq. (B.1J) below.
The rotation done for £,¢" and ¢, & is not allowed for x and 6 since this two scalar fields
behave differently under A4. The terms given by

Asdsds + Aeds€]? + [Asopst + Asydsx|? (B.4)

present two accidental continuous global symmetry. The first term in eq. (B.4))

Ashsds + Aedsé|*

presents an accidental continuous symmetry SO(3) x U(1l)r, ~ O(3). With respect to
SO(3), ¢g transforms as a triplet, while ¢,y and 6 as singlets. When ¢g acquires vev as
(ps) = (vg,0,0) the accidental continuous symmetry is broken to SO(2) x U(1) ~ O(2)
leaving two massless Goldstone bosons. Above the two fields charged under the lepton
number U(1)z, ¢g and ¢, only ¢g develops a vev. As consequence, the Goldstone boson
associated to the breaking of the abelian U(1)y has projection only along ¢g as can be
seen in eq. (B.§). The real parts of x and 6 belong to a doublet of O(2) and the imaginary
components of y and 6 belong to another doublet of O(2). When x and 6 develop vevs, the
0O(2) global symmetry is broken and other two massless Goldstone bosons arise. Indeed
the mass matrices for the real and imaginary components of the scalars involved in the
part of the scalar potential of eq. (B.4) are identical. In the basis (¢s,, ¢s,, ss, 5, X, 0)

— 10 —



the mass matrix is given by

0 0 0 0 0 0
0 2(Asv% + Asgud) 0 0 0 0
M2 — 0 0 2(Asv% + Agou?) ) 0 0 0
0 0 0 FOF +2A2)vE 0 0
0 0 0 0 EALUE B AsxAsoud
0 0 0 0 ZAsxAsovs  EAL

(B.5)

We recognize 1 + 1 Goldstone bosons from the entry (1,1) of the matrix M%. The deter-
minant of the sub-block 5,6 of the matrix ./\/125 is zero, so ./\/125 gives other 1 + 1 Goldstone
bosons.

The first term in the potential of eq. (B.9) is

|Mror + 22prdr|>. (B.6)

It is invariant under an accidental SO(3) symmetry under which ¢ transform as a triplet.
When ¢r acquire vev along the direction (1,1,1), SO(3) is broken into S3 giving rise to
the following mass matrix for the real (imaginary) components of ¢r

M2 = 8)\k2 | — (B.7)

1
3

Since the mass matrix of eq. (B.7) is S3 invariant the mass eigenstates are one singlet of S3,
with mass given by 3)\TUT, and one S3 doublet, with mass 32 )\TUT The absence of Gold-
stone bosons suggests that when ¢ acquires vev in the dlrectlon (1,1,1) the continuous
accidental global symmetry SO(3) is broken to a continuous group of its same dimensions,
3, and that contains S3. This group is SU(2) and the doublet of S5 transforms as a doublet
of SU(2).

The scalar potential of eq. (B-2) gives in total 4 4+ 4 massless particles. We break
explicitly the accidental global symmetries and the continuous lepton number U(1)z, in
Vioft in order to give masses to these 8 massless particles. The breaking terms have to
provide positive mass to the unwanted Goldstone bosons and in general this is not an easy
issue since Vo has to be negative in the minimum in order to guarantee the stability of the
potential. Indeed the problem related to the presence of flavor Goldstone bosons is given
by the 4-fermion effective operator B, BJ. This effective operator may be parametrized
by

fomd
1 mgmi, T
mZ IR (& + s )y Ol + sy (B.8)
where mf is the fermion mass matrix entry, vp the flavor symmetry breaking scale and

ij
me the mass of the scalar or pseudoscalar flavon that mediates the process that gives rise

to the 4-fermion operator. If we want to give a very rough and conservative estimate of the

— 11 —



mass m, needed to suppress flavor changing processes we can overestimate the operator of

eq. (B.§) with
1 m§2 - -
W—%¢i¢j (e (B.9)

a U

where mg,: is the heaviest mass in the f fermion family. If we now consider for example the

process p — 3e we obtain that the operator given in eq. (B.9) gives a decay width

1 m>mi
Tpsge ~ LT, (B.10)

1673 md, v
and by comparing eq. (B.10) with
sz%

Fu—mll = W ) (Bll)

and with the experimental bound I3 / Fyman < 1072, we obtain for a flavor breaking
scale around 10'° GeV the very low bound

mqe ~ 1GeV . (B.12)

The same bound is obtained by considering other tree level flavor changing processes like
K — K oscillation. If we assume that the SUSY breaking scale of the soft potential Vg is
around the TeV, then the inclusion in Vi of terms that give a positive mass around the
GeV to the unwanted Goldstone bosons does not endanger the stability of the potential.
However we lack of a dynamical principle to justify why the scale of some soft terms is
around the TeV while that of the others is around the GeV and therefore we prefer assuming
that all the soft terms are around 100 GeV- 1 TeV and imposing the constrain Vo < 0 on
the parameter of V. For example the soft potential Vg

mo 2 A ~
Vi = TT (¢% + H.c.) + %(qﬁ‘} + He) + m2|or|?
+As((0s0s) x + Hee] +mf [€of® +m €, (B.13)

contains explicitly mass terms for é/c and £. At the same time the term As(psds) x
breaks the lepton number, the accidental SO(3), since x is not a singlet of SO(3), and also
the accidental O(2) symmetry involving y and 6. If we assume the positivity of all the vevs,
we ensure the stability of the potential and the positivity of the pseudo-Goldstone boson
masses when the soft terms m%,m%,AT are negative while the soft terms As,m? ,mg,
positive and holds the condition ¢

(m3 + Mm% + 2Arur)ud + Aguiu, + m?, u?, + m?,u?, <0. (B.14)
c SC

In this way we guarantee the existence of a large region in the parameter space for which
the configuration of eq. (B.3) is the minimum of the potential of eq. (B.9) and avoid the
presence of massless particles. Notice that the soft term

As[(psps)'x + H.c)

breaks also the discrete Z3 symmetry a part from the continuous leptonic number U(1)z.
We can not care for its effects since the scale of Vo is many order of magnitude smaller
than the scale of the potential of eq. (B.3).
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C. Corrections to the mass matrix textures

In the following we will discuss the corrections to the leading mass matrix textures of
section [ The corrections to the leading textures of section f] are induced by higher order
operators in the superpotential of eq. (B-1]) and are of two kinds:

C.1 that change the vacuum configuration given in eq. (B.J) and in particular disalign the
triplets vevs; that directly affect the mass matrices, see sub-section [C.J];

C.2 that directly affect the mass matrices, see sub-section [C.3J.

C.1 Effects in the flavon superpotential

In this section we address the problem of the inclusion of the next to leading order operators
in the superpotential of eq. (B.1]). We consider only the next to leading order operators that
respect all the flavor symmetry A4 x Z3 x Z4 and the continuous lepton number U(1)y, since
all the explicit breaking terms appear in V. at a scale which is many order of magnitude
lower than the flavor breaking scale.

To the full leading order superpotential W given in of eq. (B.1), we add the next to
leading order part given by

WnL =Wniy + Wi + WLy, (C.1)
where the different terms read as
Wity = Ay 5 ($hén) (rdn) + My ($hén) (brdr)” + Aay 1 (Fhér) (Brér)’
7, 1 ($hbron)sdr,
Wivts = Aoy 1 (9Rbsdr)0 + X,y (Bbsdr) + Asy 5 (GR0r)Ex + As, 5 (Hidr)'Ed
TORbr) X+ N, 5 (ibr) €0,
Wity = A 1 (6 dsdsdr) + A,y (B sbr)é + Ny 1 (B dsdr)ér . (€2)

+Xs,

The new superpotential is given by
W' =W+ Wnt (C.3)

and the scalar potential with Vo = 0 is now

ow' |2

of. ¢i

The effect of Wy, on the SUSY-conserving vacuum configuration of eq. (B.3) is just a shift
in the vevs of the scalar fields and therefore the new vacuum configuration is given by

V= ‘ (C.4)

(o) = (vr + dvpy, v + dvpy,, v + dvpy),
<¢S> = (US + 5’05175’05’275,053)7
(pi) = ui + 0u;, (C.5)

— 13 -



where with ¢; we have indicated the generic A4 singlet and with w;, du; its leading order
vev and the shift of the vev respectively. Since we expect the shifts to be subleading and
scale as O(1/A), given the conditions

ow’

af¢i |vi+0v;

~0, (C.6)

obtained by imposing a SUSY conserving vacuum, we expand them linearly in the shifts

ow OWnL

and determine the shifts by solving the system given by eq. ([C.7) . For simplicity we give
only the approximate solutions obtained in the limit in which all the couplings \; are equal.
The derivatives with respect to the components f¢£ ~ give the following conditions

(S’UT1 = (5UT2 = (S’UT3 = (5UT,
vF

L. (C.8)

(5UT ~
The derivatives with respect to the components f¢% ~ give

dvg, = Ovss,

ovg, ~ ——,

bvs, ~ (C.9)

Finally the last derivatives give

vsvT + VU
— A

For the singlet &, &’ of A4 we have to ensure that dug /A < ug/A (dugr /A < ug//A) and it is
straightforward to check. For the triplets we need that the effects of the vev disalignments

5u§ ~ 5u5/ ~ (C.lO)

due to the presence of the shifts do not destroy the TB predictions, or in other words,
the corrections induced in sin 6s3, sin 012, sin f13 still keep in the interval indicated by the
experimental data at the 3 — o level . As shown in [[[(] this constrains impose shifts that
disalign the vevs to be of order

%” < M\, (C.11)

with v the vev of the generic triplet. In our case the shift of (¢r) maintains the correct
alignment, so we only have to worry about the disalignment of (¢g). Since at the leading
order its vev alignment is given by (1,0,0), then we have only to consider dvg, and dvg,.
eqgs. (C.§)-(C.9) and the assumptions done in the previous sections lead to

0vs, 4

2~ A3 (C.12)

that satisfy the conditions in eq. ({C.11]).
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C.2 Effects in the Yukawa superpotential

Giving a look to the mass matrices of eq. (2.9), (£.6), (2.10) we see that highest operators
giving contribute to mass matrices have scale as power of 1/A3. We have neglected oper-
ators of order greater than 1/A3. To be consistent we should consider if the inclusion of
higher order operators may destroy the fermion mass hierarchies and the quark and lepton
mixing matrices. For what concerns the quark sector the answer is trivial. For the up
quark the general entry may be written as

xmn /A\N™ ANT /29\ 8
W, = Q.U H, (Aab <%> (%) + N, (%) (%) > . (C.13)

Here n, m,r and s are integers and a, b are flavor indexes. We can obtain a similar structure
for the down quark. Giving a look to the field content of table f| we see that the conservation
of the lepton number in the matter sector imposes that the first higher order operators are
obtained by substituting ¥ in eq. (C.19) with (¢r¢r)”6/A2 or § with (¢prdr) /A2 Since
uy, ~ Aug the latter is automatically suppressed. However also the first operator gives a
very suppressed correction since it goes as U%u@ /A% ~ )\4ux.
For the charged leptons the general Yukawa superpotential may be written as
~ N ~ n
Ta
wi =y " g, (%) , (C.14)
that represents the compact expression of eq. (R.1]). Here n is an integer, a is the flavor
index and r, indicates the different A4 contractions of the triplets ngbT and L 1, that combine
with the different A4 singlets E<* to give an invariant. Due to the conservation of the Z4
symmetry at order 1/A%*" there is only one operator given by
~ A~ A ~ n
Ta

Wi =y B 7(¢T¢12LL) i, (%) : (C.15)
This operator is potentially dangerous because changes the structure of the charged lepton
mass matrix and as consequence the charged lepton mass matrix is no longer diagonalized
by the U given in eq. (R-9) but by a U’ = U+6U. This implies that the lepton mixing matrix
is deviated by the TB by an amount of order O(6U). However, since §U ~ O(v2/A?), we
obtain the relation §U/U ~ O(vr/A) ~ O(A? = A3). A deviation from the TB of this order
is still compatible with the experimental data as indicated in the previous section.

For the neutrinos the general entry is given by

A twsT
and again the lepton number conservation implies that the only term that can give some

Wi = yue + H.c. (C.16)

dangerous corrections is given by

SW, = . (C.17)

The same arguments used for the charged lepton mass matrix are applied here since the
deviation from the TB induced by eq. (C.17) is again of order O(vr/A) ~ O(A? + \3),
being ug ~ vg.
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